Pneumatic conveying (fluids.saltation)¶
-
fluids.saltation.
Geldart_Ling
(mp, rhog, D, mug)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2] and [3].
if Gs/D < 47000, use equation 1, otherwise use equation 2.
\[V_{salt} = 1.5G_s^{0.465}D^{-0.01} \mu^{0.055}\rho_f^{-0.42}\]\[V_{salt} = 8.7G_s^{0.302}D^{0.153} \mu^{0.055}\rho_f^{-0.42}\]\[Fr_s = 15\mu^{0.25}\left(\frac{d_p}{D}\right)^{0.1}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]\[G_s = \frac{m_p}{A}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- mugfloat
Gas viscosity, [Pa*s]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearranged to be explicit in terms of saltation velocity internally.
References
- 1
Weber, M. 1981. Principles of hydraulic and pneumatic conveying in pipes. Bulk Solids Handling 1: 57-63.
- 2
Rabinovich, Evgeny, and Haim Kalman. “Threshold Velocities of Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review.” Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011). doi:10.1515/REVCE.2011.011.
- 3
Gomes, L. M., and A. L. Amarante Mesquita. “On the Prediction of Pickup and Saltation Velocities in Pneumatic Conveying.” Brazilian Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46. doi:10.1590/S0104-66322014000100005
Examples
>>> Geldart_Ling(1., 1.2, 0.1, 2E-5) 7.467495862402707
-
fluids.saltation.
Matsumoto_1974
(mp, rhop, dp, rhog, D, Vterminal=1)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1]. Also described in [2].
\[\mu = 0.448 \left(\frac{\rho_p}{\rho_f}\right)^{0.50}\left(\frac{Fr_p} {10}\right)^{-1.75}\left(\frac{Fr_s}{10}\right)^{3}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- rhopfloat
Particle density, [kg/m^3]
- dpfloat
Particle diameter, [m]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- Vterminalfloat
Terminal velocity of particle settling in gas, [m/s]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearranged to be explicit in terms of saltation velocity internally. Result looks high, something may be wrong. For particles > 0.3 mm.
References
- 1
Matsumoto, Shigeru, Michio Kara, Shozaburo Saito, and Siro Maeda. “Minimum Transport Velocity for Horizontal Pneumatic Conveying.” Journal of Chemical Engineering of Japan 7, no. 6 (1974): 425-30. doi:10.1252/jcej.7.425.
- 2
Jones, Peter J., and L. S. Leung. “A Comparison of Correlations for Saltation Velocity in Horizontal Pneumatic Conveying.” Industrial & Engineering Chemistry Process Design and Development 17, no. 4 (October 1, 1978): 571-75. doi:10.1021/i260068a031
Examples
>>> Matsumoto_1974(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24) 19.583617317317895
-
fluids.saltation.
Matsumoto_1975
(mp, rhop, dp, rhog, D, Vterminal=1)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1]. Also described in [2].
\[\mu = 1.11 \left(\frac{\rho_p}{\rho_f}\right)^{0.55}\left(\frac{Fr_p} {10}\right)^{-2.3}\left(\frac{Fr_s}{10}\right)^{3}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- rhopfloat
Particle density, [kg/m^3]
- dpfloat
Particle diameter, [m]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- Vterminalfloat
Terminal velocity of particle settling in gas, [m/s]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearranged to be explicit in terms of saltation velocity internally. Result looks high, something may be wrong. For particles > 0.3 mm.
References
- 1
Matsumoto, Shigeru, Shundo Harada, Shozaburo Saito, and Siro Maeda. “Saltation Velocity for Horizontal Pneumatic Conveying.” Journal of Chemical Engineering of Japan 8, no. 4 (1975): 331-33. doi:10.1252/jcej.8.331.
- 2
Jones, Peter J., and L. S. Leung. “A Comparison of Correlations for Saltation Velocity in Horizontal Pneumatic Conveying.” Industrial & Engineering Chemistry Process Design and Development 17, no. 4 (October 1, 1978): 571-75. doi:10.1021/i260068a031
Examples
>>> Matsumoto_1975(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24) 18.04523091703009
-
fluids.saltation.
Matsumoto_1977
(mp, rhop, dp, rhog, D, Vterminal=1)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1] and reproduced in [2], [3], and [4].
First equation is used if third equation yields d* higher than dp. Otherwise, use equation 2.
\[\mu = 5560\left(\frac{d_p}{D}\right)^{1.43}\left(\frac{Fr_s}{10}\right)^4\]\[\mu = 0.373 \left(\frac{\rho_p}{\rho_f}\right)^{1.06}\left(\frac{Fr_p} {10}\right)^{-3.7}\left(\frac{Fr_s}{10}\right)^{3.61}\]\[\frac{d_p^*}{D} = 1.39\left(\frac{\rho_p}{\rho_f}\right)^{-0.74}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- rhopfloat
Particle density, [kg/m^3]
- dpfloat
Particle diameter, [m]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- Vterminalfloat
Terminal velocity of particle settling in gas, [m/s]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearanged to be explicit in terms of saltation velocity internally.r
References
- 1
Matsumoto, Shigeru, Makoto Kikuta, and Siro Maeda. “Effect of Particle Size on the Minimum Transport Velocity for Horizontal Pneumatic Conveying of Solids.” Journal of Chemical Engineering of Japan 10, no. 4 (1977): 273-79. doi:10.1252/jcej.10.273.
- 2
Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic Conveying of Solids: A Theoretical and Practical Approach. Springer, 2013.
- 3
Gomes, L. M., and A. L. Amarante Mesquita. “On the Prediction of Pickup and Saltation Velocities in Pneumatic Conveying.” Brazilian Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46. doi:10.1590/S0104-66322014000100005
- 4
Rabinovich, Evgeny, and Haim Kalman. “Threshold Velocities of Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review.” Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011). doi:10.1515/REVCE.2011.011.
Examples
Example is only a self-test.
Course routine, terminal velocity input is from example in [2].
>>> Matsumoto_1977(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24) 16.64284834446686
-
fluids.saltation.
Rizk
(mp, dp, rhog, D)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2] and many others.
\[\mu=\left(\frac{1}{10^{1440d_p+1.96}}\right)\left(Fr_s\right)^{1100d_p+2.5}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- dpfloat
Particle diameter, [m]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearranged to be explicit in terms of saltation velocity internally.
References
- 1
Rizk, F. “Pneumatic conveying at optimal operation conditions and a solution of Bath’s equation.” Proceedings of Pneumotransport 3, paper D4. BHRA Fluid Engineering, Cranfield, England (1973)
- 2
Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic Conveying of Solids: A Theoretical and Practical Approach. Springer, 2013.
- 3
Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013.
Examples
Example is from [3].
>>> Rizk(mp=0.25, dp=100E-6, rhog=1.2, D=.078) 9.8833092829357
-
fluids.saltation.
Schade
(mp, rhop, dp, rhog, D)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2], [3], [4], and [5].
\[Fr_s = \mu^{0.11}\left(\frac{D}{d_p}\right)^{0.025}\left(\frac{\rho_p} {\rho_f}\right)^{0.34}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- rhopfloat
Particle density, [kg/m^3]
- dpfloat
Particle diameter, [m]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearranged to be explicit in terms of saltation velocity internally.
References
- 1
Schade, B., Zum Ubergang Sprung-Strahnen-forderung bei der Horizontalen Pneumatischen Feststoffordrung. Dissertation, University of Karlsruche (1987)
- 2
Rabinovich, Evgeny, and Haim Kalman. “Threshold Velocities of Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review.” Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011). doi:10.1515/REVCE.2011.011.
- 3
Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. “Modeling Minimum Transport Boundary for Fluidized Dense-Phase Pneumatic Conveying Systems.” Powder Technology 277 (June 2015): 244-51. doi:10.1016/j.powtec.2015.02.050.
- 4
Bansal, A., S. S. Mallick, and P. W. Wypych. “Investigating Straight-Pipe Pneumatic Conveying Characteristics for Fluidized Dense-Phase Pneumatic Conveying.” Particulate Science and Technology 31, no. 4 (July 4, 2013): 348-56. doi:10.1080/02726351.2012.732677.
- 5
Gomes, L. M., and A. L. Amarante Mesquita. “On the Prediction of Pickup and Saltation Velocities in Pneumatic Conveying.” Brazilian Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46. doi:10.1590/S0104-66322014000100005
Examples
>>> Schade(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1) 13.697415809497912
-
fluids.saltation.
Weber_saltation
(mp, rhop, dp, rhog, D, Vterminal=4)[source]¶ Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2], [3], [4], and [5].
If Vterminal is under 3 m/s, use equation 1; otherwise, equation 2.
\[Fr_s = \left(7 + \frac{8}{3}V_{terminal}\right)\mu^{0.25} \left(\frac{d_p}{D}\right)^{0.1}\]\[Fr_s = 15\mu^{0.25}\left(\frac{d_p}{D}\right)^{0.1}\]\[Fr_s = \frac{V_{salt}}{\sqrt{gD}}\]\[\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}\]- Parameters
- mpfloat
Solid mass flow rate, [kg/s]
- rhopfloat
Particle density, [kg/m^3]
- dpfloat
Particle diameter, [m]
- rhogfloat
Gas density, [kg/m^3]
- Dfloat
Diameter of pipe, [m]
- Vterminalfloat
Terminal velocity of particle settling in gas, [m/s]
- Returns
- Vfloat
Saltation velocity of gas, [m/s]
Notes
Model is rearranged to be explicit in terms of saltation velocity internally.
References
- 1
Weber, M. 1981. Principles of hydraulic and pneumatic conveying in pipes. Bulk Solids Handling 1: 57-63.
- 2
Rabinovich, Evgeny, and Haim Kalman. “Threshold Velocities of Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review.” Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011). doi:10.1515/REVCE.2011.011.
- 3
Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. “Modeling Minimum Transport Boundary for Fluidized Dense-Phase Pneumatic Conveying Systems.” Powder Technology 277 (June 2015): 244-51. doi:10.1016/j.powtec.2015.02.050.
- 4
Bansal, A., S. S. Mallick, and P. W. Wypych. “Investigating Straight-Pipe Pneumatic Conveying Characteristics for Fluidized Dense-Phase Pneumatic Conveying.” Particulate Science and Technology 31, no. 4 (July 4, 2013): 348-56. doi:10.1080/02726351.2012.732677.
- 5
Gomes, L. M., and A. L. Amarante Mesquita. “On the Prediction of Pickup and Saltation Velocities in Pneumatic Conveying.” Brazilian Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46. doi:10.1590/S0104-66322014000100005
Examples
Examples are only a self-test.
>>> Weber_saltation(mp=1, rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=4) 15.227445436331474