Hydrology, weirs and open flow (fluids.open_flow)

fluids.open_flow.C_Chezy_to_n_Manning(C, Rh)[source]

Converts a Chezy coefficient to a Manning roughness coefficient, given the hydraulic radius of the channel.

\[n = \frac{1}{C}R_h^{1/6}\]
Parameters
Cfloat

Chezy coefficient [m^0.5/s]

Rhfloat

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Returns
nfloat

Manning roughness coefficient [s/m^(1/3)]

References

1

Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.

Examples

Custom example, checked.

>>> C_Chezy_to_n_Manning(26.15, Rh=5)
0.05000613713238358
fluids.open_flow.Q_weir_V_Shen(h1, angle=90)[source]

Calculates the flow rate across a V-notch (triangular) weir from the height of the liquid above the tip of the notch, and with the angle of the notch. Most of these type of weir are 90 degrees. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = C \tan\left(\frac{\theta}{2}\right)\sqrt{g}(h_1 + k)^{2.5}\]
Parameters
h1float

Height of the fluid above the notch [m]

anglefloat, optional

Angle of the notch [degrees]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

angles = [20, 40, 60, 80, 100] Cs = [0.59, 0.58, 0.575, 0.575, 0.58] k = [0.0028, 0.0017, 0.0012, 0.001, 0.001]

The following limits apply to the use of this equation:

h1 >= 0.05 m h2 > 0.45 m h1/h2 <= 0.4 m b > 0.9 m

\[\frac{h_1}{b}\tan\left(\frac{\theta}{2}\right) < 2\]

Flows are lower than obtained by the curves at http://www.lmnoeng.com/Weirs/vweir.php.

References

1

Shen, John. “Discharge Characteristics of Triangular-Notch Thin-Plate Weirs : Studies of Flow to Water over Weirs and Dams.” USGS Numbered Series. Water Supply Paper. U.S. Geological Survey : U.S. G.P.O., 1981

2

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_V_Shen(0.6, angle=45)
0.21071725775478228
fluids.open_flow.Q_weir_rectangular_Kindsvater_Carter(h1, h2, b)[source]

Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = 0.554\left(1 - 0.0035\frac{h_1}{h_2}\right)(b + 0.0025) \sqrt{g}(h_1 + 0.0001)^{1.5}\]
Parameters
h1float

Height of the fluid above the crest of the weir [m]

h2float

Height of the fluid below the crest of the weir [m]

bfloat

Width of the rectangular flow section of the weir [m]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

b/b1 ≤ 0.2 h1/h2 < 2 b > 0.15 m h1 > 0.03 m h2 > 0.1 m

References

1

Kindsvater, Carl E., and Rolland W. Carter. “Discharge Characteristics of Rectangular Thin-Plate Weirs.” Journal of the Hydraulics Division 83, no. 6 (December 1957): 1-36.

2

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_Kindsvater_Carter(0.2, 0.5, 1)
0.15545928949179422
fluids.open_flow.Q_weir_rectangular_SIA(h1, h2, b, b1)[source]

Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = 0.544\left[1 + 0.064\left(\frac{b}{b_1}\right)^2 + \frac{0.00626 - 0.00519(b/b_1)^2}{h_1 + 0.0016}\right] \left[1 + 0.5\left(\frac{b}{b_1}\right)^4\left(\frac{h_1}{h_1+h_2} \right)^2\right]b\sqrt{g}h^{1.5}\]
Parameters
h1float

Height of the fluid above the crest of the weir [m]

h2float

Height of the fluid below the crest of the weir [m]

bfloat

Width of the rectangular flow section of the weir [m]

b1float

Width of the full section of the channel [m]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

b/b1 ≤ 0.2 h1/h2 < 2 b > 0.15 m h1 > 0.03 m h2 > 0.1 m

References

1

Normen für Wassermessungen: bei Durchführung von Abnahmeversuchen an Wasserkraftmaschinen. SIA, 1924.

2

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_SIA(0.2, 0.5, 1, 2)
1.0408858453811165
fluids.open_flow.Q_weir_rectangular_full_Ackers(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2], confirmed with [3].

Flow rate is given by:

\[Q = 0.564\left(1+0.150\frac{h_1}{h_2}\right)b\sqrt{g}(h_1+0.001)^{1.5}\]
Parameters
h1float

Height of the fluid above the crest of the weir [m]

h2float

Height of the fluid below the crest of the weir [m]

bfloat

Width of the channel section [m]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

h1 > 0.02 m h2 > 0.15 m h1/h2 ≤ 2.2

References

1

Ackers, Peter, W. R. White, J. A. Perkins, and A. J. M. Harrison. Weirs and Flumes for Flow Measurement. Chichester ; New York: John Wiley & Sons Ltd, 1978.

2

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

3(1,2)

Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.

Examples

Example as in [3], matches. However, example is unlikely in practice.

>>> Q_weir_rectangular_full_Ackers(h1=0.9, h2=0.6, b=5)
9.251938159899948
fluids.open_flow.Q_weir_rectangular_full_Kindsvater_Carter(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = \frac{2}{3}\sqrt{2}\left(0.602 + 0.0832\frac{h_1}{h_2}\right) b\sqrt{g} (h_1 +0.00125)^{1.5}\]
Parameters
h1float

Height of the fluid above the crest of the weir [m]

h2float

Height of the fluid below the crest of the weir [m]

bfloat

Width of the channel section [m]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

h1 > 0.03 m b > 0.15 m h2 > 0.1 m h1/h2 < 2

References

1

Kindsvater, Carl E., and Rolland W. Carter. “Discharge Characteristics of Rectangular Thin-Plate Weirs.” Journal of the Hydraulics Division 83, no. 6 (December 1957): 1-36.

2

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_full_Kindsvater_Carter(h1=0.3, h2=0.4, b=2)
0.641560300081563
fluids.open_flow.Q_weir_rectangular_full_Rehbock(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = \frac{2}{3}\sqrt{2}\left(0.602 + 0.0832\frac{h_1}{h_2}\right) b\sqrt{g} (h_1 +0.00125)^{1.5}\]
Parameters
h1float

Height of the fluid above the crest of the weir [m]

h2float

Height of the fluid below the crest of the weir [m]

bfloat

Width of the channel section [m]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

0.03 m < h1 < 0.75 m b > 0.3 m h2 > 0.3 m h1/h2 < 1

References

1

King, H. W., Floyd A. Nagler, A. Streiff, R. L. Parshall, W. S. Pardoe, R. E. Ballester, Gardner S. Williams, Th Rehbock, Erik G. W. Lindquist, and Clemens Herschel. “Discussion of ‘Precise Weir Measurements.’” Transactions of the American Society of Civil Engineers 93, no. 1 (January 1929): 1111-78.

2

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_full_Rehbock(h1=0.3, h2=0.4, b=2)
0.6486856330601333
fluids.open_flow.Q_weir_rectangular_full_SIA(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = \frac{2}{3}\sqrt{2}\left(0.615 + \frac{0.000615}{h_1+0.0016}\right) b\sqrt{g} h_1 +0.5\left(\frac{h_1}{h_1+h_2}\right)^2b\sqrt{g} h_1^{1.5}\]
Parameters
h1float

Height of the fluid above the crest of the weir [m]

h2float

Height of the fluid below the crest of the weir [m]

bfloat

Width of the channel section [m]

Returns
Qfloat

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

0.025 < h < 0.8 m b > 0.3 m h2 > 0.3 m h1/h2 < 1

References

1

Normen für Wassermessungen: bei Durchführung von Abnahmeversuchen an Wasserkraftmaschinen. SIA, 1924.

2(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

Example compares terribly with the Ackers expression - probable error in [2]. DO NOT USE.

>>> Q_weir_rectangular_full_SIA(h1=0.3, h2=0.4, b=2)
1.1875825055400384
fluids.open_flow.V_Chezy(Rh, S, C)[source]

Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Chezy coefficient C.

Flow rate is given by:

\[V = C\sqrt{S R_h}\]
Parameters
Rhfloat

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Sfloat

Slope of the channel, m/m [-]

Cfloat

Chezy coefficient [m^0.5/s]

Returns
Vfloat

Average velocity of the channel [m/s]

References

1

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

2

Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.

3

Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.

Examples

Custom example, checked.

>>> V_Chezy(Rh=5, S=0.001, C=26.153)
1.8492963648371776
fluids.open_flow.V_Manning(Rh, S, n)[source]

Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Manning roughness coefficient n.

Flow rate is given by:

\[V = \frac{1}{n} R_h^{2/3} S^{0.5}\]
Parameters
Rhfloat

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Sfloat

Slope of the channel, m/m [-]

nfloat

Manning roughness coefficient [s/m^(1/3)]

Returns
Vfloat

Average velocity of the channel [m/s]

Notes

This is equation is often given in imperial units multiplied by 1.49.

References

1

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

2

Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.

Examples

Example is from [2], matches.

>>> V_Manning(0.2859, 0.005236, 0.03)
1.0467781958118971
fluids.open_flow.n_Manning_to_C_Chezy(n, Rh)[source]

Converts a Manning roughness coefficient to a Chezy coefficient, given the hydraulic radius of the channel.

\[C = \frac{1}{n}R_h^{1/6}\]
Parameters
nfloat

Manning roughness coefficient [s/m^(1/3)]

Rhfloat

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Returns
Cfloat

Chezy coefficient [m^0.5/s]

References

1

Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.

Examples

Custom example, checked.

>>> n_Manning_to_C_Chezy(0.05, Rh=5)
26.15320972023661